how many terms of the progression 50,46,42,... must be taken for its sum to be equal to 0?
Matematika
amal1999
Pertanyaan
how many terms of the progression 50,46,42,... must be taken for its sum to be equal to 0?
2 Jawaban
-
1. Jawaban nabnabs
Let [tex]S_{n}[/tex] be the sum of sequence up to n terms. since it's a arithmetic sequence, the difference is constant, so
[tex]d=u_{2}-u_{1}\\=46-50\\=-4[/tex]
now using n-term formula, we get
[tex]u_{n}=u_{1}+(n-1)d\\=50+(n-1)\times(-4)\\=50-4n+4\\=54-4n[/tex]
lets use our logic, the sequence is (50,46,42,38,...10,6,2,-2,-6,-10,...,-42,-46,-50,...). the sequence is symmetry to 0
[tex]50+46+42+...+6+2+(-2)+(-6)+...+(-46)+(-50)=(50-50)+(46-46)+...(2-2)=0+0+...+0=0[/tex]
so, when [tex]u_{n}=-50[/tex], the sum is equal to 0. using n-term formula, we get the n
[tex]u_{n}=54-4n\\-50=54-4n\\4n=104\\n=26[/tex]
the other way is using direct formula. here is the derivative:
[tex]S_{n}=u_{1}+(u_{1}+d)+(u_{1}+2d)+...+(u_{1}+(n-1)d)\\=u_{1}\times n+(0\times d+1\times 1+2\times d+...+(n-1)\times d)\\=u_{1}\times n+(0+1+2+...+(n-1))\times d\\=u_{1}\times n+\frac{(n-1)((n-1)+1)}{2}\times d\\=u_{1}\times n+\frac{n(n-1)}{2}\times d\\=\frac{2u_{1}n+n(n-1)\times d}{2}\\=\frac{n(2u_{1}+(n-1)d)}{2}[/tex]
just follow the step below
now, using series formula for arithmetic series, we get
[tex]S_{n}=\frac{n(2u_{1}+(n-1)d)}{2}\\=\frac{n(2\times 50+(n-1)\times(-4))}{2}\\=\frac{n(100-4n+4)}{2}\\=\frac{n(104-4n)}{2}[/tex]
the last step, just substitute Sn by 0
[tex]S_{n}=\frac{n(104-4n)}{2}\\0=\frac{n(104-4n)}{2}\\n=0\vee 104-4n=0\\n_{1}=0\vee n_{2}=26[/tex] -
2. Jawaban zakipelajar
Bab Rows and series
50,46,42
initial Value = 50 = IV
different = 46 - 50 = - 4 = D
Un = IV + (n - 1) D
Un = 50 + (n - 1) -4
Un = 50 + -4n + 4
Un = 54 -4n
Un = - 50
Un = 54 - 4n
-50 = 54 - 4n (Both segments are exchanged)
4n = 54 + 50
4n = 104
n = 104/4
n = 26
So,many developmental requirements = 26